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ABSTRACT
This paper presents a novel set of uncertainty measures

to quantify the impact of input uncertainty on nonlinear
prognosis systems. A Particle Filtering-based method is
also presented that uses this set of uncertainty measures
to quantify, in real time, the impact of load, environmen-
tal, and other stresses for long-term prediction. Further-
more, this work shows how these measures can be used
to implement a novel feedback correction loop aimed to
suggest modifications, at a system input level, with the
purpose of extending the remaining useful life of a faulty
nonlinear, non-Gaussian system. The correction scheme
is tested and illustrated using real vibration feature data
from a fatigue-driven fault in a critical aircraft compo-
nent.

1. INTRODUCTION
Particle Filter (PF) algorithms have become a key com-
ponent of failure prognosis frameworks since they pro-
vide a strong mathematical foundation to represent, and
even manage, uncertainty in long-term predictions when
used in combination with outer feedback correction
loops. PF-based prognostic algorithms (Orchard, 2005;
Orchard, 2008; Orchard, 2009; Patrick, 2007; Zhang,
2009) have been established as the de facto state of the
art in failure prognosis, helping to combine the advan-
tages and solving some of the issues that are present
in a number of approaches that have been suggested
in recent years for uncertainty representation and man-
agement in prediction. These methods include proba-
bilistic methods, tools derived from evidential theory or
Dempster-Shafer theory (Shafer, 1976), soft-computing
methods (fuzzy logic), Confidence Prediction Neural
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Networks (NN) (Khiripet, 2001), and probabilistic re-
liability analysis tools employing an inner-outer loop
Bayesian update scheme (Cruse, 2004) to “tune” model
hyper-parameters given observations. The implementa-
tion of PF-based prognostic frameworks allow to avoid
the assumption of Gaussian (or log-normal) probabil-
ity density functions (PDF) in nonlinear processes, with
unknown model parameters, and simultaneously help to
consider non-uniform probabilities of failure for particu-
lar regions of the state domain. Particularly, the authors
in (Orchard, 2008) have proposed a mathematically rig-
orous method (based on PF, function kernels, and outer
correction loops) to represent and manage uncertainty in
long-term predictions.

Given that most systems depend on external inputs
(and commands), it is particularly important to mea-
sure the overall effect that probable future load varia-
tions would have on the faulty subsystem under anal-
ysis. In order to accurately predict the remaining use-
ful life (RUL) of a system under fault conditions, the
prognosis algorithm must take into account the various
stresses affecting the system. Stress on the system re-
sults from many factors including environmental stresses
(wind, temperature, humidity, etc.) and control effort
(load, torque, speed etc.). Previous work in failure prog-
nosis has relied on assuming knowledge of these stress
conditions. In most applications however, this knowl-
edge is unavailable. Due to the unpredictable nature
of environmental and control effort, it benefits the sys-
tem operator to not only receive prognostics information
based on expected stress induced on the system, but in-
formation about a range of stress levels, including the
most probable stress levels as well as extreme stress lev-
els (i.e. the maximum and minimum stresses). Knowl-
edge of how these varying stress levels affect the remain-
ing useful life of the system provide the operator with a
complete picture of how the fault is progressing which
will lead to smarter decisions in control to mitigate the
fault growth while also meeting the performance require-
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ments of the system.
This paper presents a solution for the aforementioned

problem and it is organized as follows. Section 2 in-
troduces the basics of particle filtering (PF) and its ap-
plication to the field of failure prognostics. Section 3
presents the foundations of the analysis of the impact
of stress variability on prognostic results and proposes
a set of novel uncertainty measures to quantify the afore-
mentioned impact. Section 4 introduces a measure-based
feedback correction loop that demonstrates the utility of
the measures developed in Section 3 in extending the re-
maining useful life of a failing system. Section 5 shows
the results of the implementation of the proposed feed-
back correction scheme on real vibration feature data
from a fatigue-driven fault test in a critical aircraft com-
ponent. Finally, Section 6 states the most important con-
clusions.

2. PARTICLE FILTERING AND FAILURE
PROGNOSIS

Prognosis, and thus the generation of long-term predic-
tions, is a problem that goes beyond the scope of filter-
ing applications since it involves future time horizons.
Therefore, the application of PF algorithms in a progno-
sis framework necessarily implies a procedure to project
the current particle population in time in the absence of
new observations (Orchard, 2009). It is assumed, at this
point, that there is at least one feature providing a mea-
sure of the severity of the fault condition under analysis
(fault dimension); a condition that is necessary for the
implementation of any adaptive prognosis scheme. If
many features are available, they can always be com-
bined to generate a single signal. In this sense, it is
possible to describe the evolution in time of the fault di-
mension through the nonlinear state equation (Orchard,
2008):{
x1(t+ 1)=x1(t)+x2(t)·F (x(t), t, U)+ω1(t),
x2(t+ 1)=x2(t)+ω2(t)

(1)

where x1(t) is a state representing the fault dimension
under analysis, x2(t) is a state associated with an un-
known model parameter, U are external inputs to the sys-
tem (load profile, etc.), F (x(t), t, U) is a general time-
varying nonlinear function, ω1 and ω2, are white noises
(not necessarily Gaussian). For the purposes of this pa-
per the variables x1(t) and x2(t) are considered to be
scalars, however depending on the implmentation these
variable may also represent vectors. The nonlinear func-
tion F (x(t), t, U) may represent a model based on first
principles, a neural network, or even a fuzzy system.

By using the aforementioned state equation to repre-
sent the evolution of the fault dimension in time, it is
possible to generate long term predictions using kernel
functions to reconstruct the estimate of the state PDF in
future time instants:

p̂(xt+k|x̂1:t+k−1) ≈
N∑
i=1

w
(i)
t+k−1K

(
xt+k − E

[
x

(i)
t+k|x̂

(i)
t+k−1

])
(2)

where K(·) is a kernel density function, which may cor-
respond to the process noise PDF, a Gaussian kernel or

a rescaled version of the Epanechnikov kernel (Orchard,
2008).

The resulting predicted state PDF contains critical in-
formation about the evolution of the fault dimension over
time. One way to represent that information is through
the computation of statistics (expectations, 95% confi-
dence intervals), either the Time-of-Failure (ToF) or the
Remaining Useful Life (RUL) of the faulty system. A
detailed procedure to obtain the RUL PDF from the pre-
dicted path of the state PDF is described and discussed in
(Orchard, 2009), although the general concept is as fol-
lows. Basically, the RUL PDF can be computed from the
function of probability of failure at future time instants.
This probability is calculated using both the long-term
predictions and empirical knowledge about critical con-
ditions for the system. This empirical knowledge is usu-
ally incorporated in the form of thresholds for main fault
indicators, also referred to as the hazard zones.

In real applications, it is expected for the hazard zones
to be statistically determined on the basis of historical
failure data, defining a critical PDF with lower and up-
per bounds for the fault indicator (Hlb and Hub, respec-
tively). Since the hazard zone specifies the probability
of failure for a fixed value of the fault indicator, and the
weights {w(i)

t+k}i=1...N represent the predicted probabil-
ity for the set of predicted paths, then it is possible to
compute the probability of failure at any future time in-
stant (namely the RUL PDF) by applying the law of total
probabilities, as shown in Eq. (3). Once the RUL PDF is
computed, combining the weights of predicted trajecto-
ries with the hazard zone specifications, it is well known
how to obtain prognosis confidence intervals, as well as
the RUL expectation.

p̂TTF (t) =

N∑
i=1

Pr(Failure|X = x̂
(i)
t , Hlb, Hub) · w(i)

t (3)

Equations (1), (2), and (3) can be used to show that
the a priori state PDF for future time instants, and thus
the time-of-failure (ToF) PDF, directly depends on the
a priori probability distribution of the load profile for
future time instants. Most of the times, long-term pre-
dictions assume that the latter distribution is a Dirac’s
delta function, which basically implies a deterministic
function of time for future load profiles. Although this
simplification helps to speed up the prognostic procedure
and to generate the most likely ToF estimate, it does not
consider future changes in operating conditions or unex-
pected events that could affect the remaining useful life
of the system under analysis. Monte Carlo simulation
can be used to generate ToF estimates for arbitrary a pri-
ori distributions of future load conditions, however it is
not always possible to obtain these results in real-time.
In this sense, PF-based prognostic routines not only pro-
vide a theoretical framework where these concepts can
be incorporated in real-time, but also allow the use of un-
certainty measures to characterize the sensitivity of the
system with respect to changes in future load distribu-
tions.

Furthermore, if a formal definition of mass probabil-
ity is assigned to each possible stress condition, a ToF
PDF estimate can be obtained as a weighted sum of ker-
nels, where each kernel represents the PDF estimate of a
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known constant load. Indeed, if the a priori distribution
of future operating conditions is given by:

P {U = u} =
Nu∑
j=1

πjδ(u− uj), (4)

where {uj}Nu

j=1 is a set of constant load values, then the
probability of failure at a future time t can be computed
using (5).

p̂ToF (t) =

Nu∑
j=1

πj

N∑
i=1

w
(i)
t · P

(
x̂

(i)
t

)
, (5)

P
(
x̂

(i)
t

)
= Pr(Failure|X = x̂

(i)
t , U = uj , Hlb, Hub)

3. IMPACT OF VARYING STRESS LEVELS ON
A FAULTY SYSTEM

Figure 3. illustrates the predicted fault growth of a sys-
tem where a fault is detected at time tdetect and a pre-
diction of the remaining useful life is made at time
tprognosis for varying stress levels. The illustration
shows how varying the stress on the system can have a
significant impact on its remaining useful life. The ob-
jective is to characterize the manner in which the stress
uncertainty affects the uncertainty in the RUL estimates.

Figure 1: Predicted Fault Growth Curves for Maximum,
Minimum, Median, and Baseline Stress Levels.

Consider, for instance, the growth of a given fault condi-
tion when the system is affected by four different stress
profiles, see Figure 1: the expected or baseline stress
level (UBase), the maximum or worst-case stress level
(UW ), the minimum or best-case stress level (UB), and
the midpoint between the best and worst-case stress lev-
els (UM ). The resulting RUL prediction for each of
these stress levels are RULBase, RULW , RULB , and
RULM respectively, as defined below.

RULBase : PDF of the predicted RUL for
the baseline load
(most likely stress level)

RULB : PDF of the predicted RUL for
the minimum load
(best-case stress level)

RULW : PDF of the predicted RUL for
the maximum load/overload
(worst-case stress level)

RULM : PDF of the predicted RUL for
the median load
(mean of best and worst case)

It is assumed that the trivial stress profile (constant null
load) case is infeasible and a set of feasible stress profiles
and operating points is given. The assumption to ignore
the trivial stress profile can be made because such a stress
profile indicates a system that is not in operation (e.g.
an aircraft cannot stay aloft without a non-zero level of
stress being exerted on the system).

The analysis of the best and worst case stress profiles
creates a range of RUL predictions that are used to pro-
vide bounds on the prediction horizon. From this range,
predictions based on the expected or baseline stress con-
ditions can be compared in order provide a context for
understanding how future changes in the stress on the
system will influence its remaining useful life. Measures
that encapsulate the effects of varying the stress on the
system are created and discussed below.

3.1 Load Prediction Index
The Load Prediction Index (LPI), is a measure of how
close the baseline RUL prediction is to the extreme RUL
cases (RULW and RULB). The Load Prediction Index is
defined in Equation (7). The utility of the Load Predic-
tion Index is that it converts the unbounded number that
is the mean value of the predicted RUL and normalizes
it to a value, LPI ∈ [0, 1], where an LPI near 0 indi-
cates that the baseline RUL prediction is very near the
best case stress level and little improvement in RUL can
be obtainted through decreasing the stress level. Con-
versely an LPI near 1 indicates an RUL near the worst
case stress level and improvement is possible through
decreasing the stress level. This normalization allows
for the creation of generic algorithms to handle control
requestions based on anticipated outcomes of adjusting
the stress.

T =Mean(RULB)−Mean(RULW ) (6)

LPI =
Mean(RULB)−Mean(RULBase)

T
(7)

3.2 Load Prediction Percentage
The Load Prediction Percentage (LPP) is an indicator of
precision in our predicted RUL PDF with respect to the
best and worst case predictions. The LPP is the percent-
age of T that is covered by the standard deviation of the
RUL estimate. The utility of the LPP is that it converts
the standard deviation of a predicted RUL, a number that
varies significantly for different applications, and con-
verts it to a number that is a function of RULB and
RULW . This normalizes the standard deviation so that
it can be compared with other RUL standard deviations
from various applications and prognosis algorithms.

LPP =
stdev(RULBase)

T
(8)

3.3 Maximum Dispersion
The Maximum Dispersion (MD) metric is a measure of
how much uncertainty in the stress profile (U) the system
can tolerate, while still ensuring operation bounded by
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either the worst or best case scenarios. MD is defined as
follows:

MD = min(ν) s.t.
Pr{rul ∈ RUL ∩RULB} ≥ c or

Pr{rul ∈ RUL ∩RULW } ≥ c (9)

Where υ is the variance of the stress input that is associ-
ated with the RUL PDF estimate and c ∈ [0, 1].
As the uncertainty of the load increases, the uncertainty
of the resulting RUL PDF estimate will also increase.
MD shows a bound for the load uncertainty that limits
the overlap between the resulting RUL estimate and ei-
ther the best or worst case scenarios. The utility of this
metric is that it provides a boundary for the level of noise
that can be tolerated in the prediction. A level of noise
that is beyond the maximum dispersion will lead to an
unreliable prediction.

Figure 2: PDF of RUL overlapping with best case RUL
PDF.

3.4 Stress Sensitivity Measures
Stress sensitivity is a measure of the change in uncer-
tainty in the RUL prediction as a function of the uncer-
tainty in the stress profile. Stress sensitivity is found
by adding a Gaussian white noise to the median stress
level and comparing the resulting RUL PDF with the
RUL PDF from the deterministic median stress level.
This effect is illustrated in Figure 3 where the green
kernels show UBase and the resulting RULBase PDF,
and the blue kernels show UBase+ω and the resulting
RULBase+ω PDF. Since UBase is a deterministic func-
tion of time, then its a priori distribution is represented
as a Dirac’s delta function. Stress sensitivity is measured
in two ways, Dispersion Sensitivity, defined in Eq. (10)
and Confidence Interval Sensitivity, defined in Eq. ( 11)

Figure 3: Stress Sensitivity.

Dispersion Sensitivity:

DSω =
stdev(RULBase+ω)

stdev(RULBase)
(10)

Confidence Interval Sensitivity:

CISω =
Length(CI{RULBase+ω})
Length(CI{RULBase})

(11)

where RULM+ω is the predicted RUL with a load fac-
tor of UM+ω where UM+ω(t) = UM (t) + ω(t) and
ω(t) is Gaussian white noise. The stress sensitivity
measures provide a means of determining how adjust-
ments in stress will affect the RUL prediction without
the need of running individual simulations for each po-
tential stress. Low stress sensitivity measures indicate a
system which has a remaining useful life that will vary
little with respect to changes in the load profile whereas
a high stress sensitivity measure indicates an ability on
the part of the operator or reconfigurable controller alter
the RUL through adjustments in the load profile.

4. UNCERTAINTY MEASURE-BASED
FEEDBACK CORRECTION LOOPS FOR
EXTENSION OF REMAINING USEFUL LIFE

The main motivation behind the definition of uncertainty
measures, based on the outcomes from PF-based prog-
nostic routines, is to characterize the effects that changes
in operating conditions may have on the resulting re-
maining useful life of the system, in real-time. How-
ever, that is only the first step in a more complex prob-
lem: to establish correction loops aimed to extend the
remaining useful life of a piece of equipment. This sec-
tion of the paper presents and analyzes a novel measure-
based method that is proposed as a general approach to
establish feedback correction loops aimed to lengthen
the RUL of a nonlinear system. The method utilizes a
PF-based prognosis framework to determine the baseline
PDF estimate of the remaining useful life (RULBase)
and then utilizes the sensitivity measures (DS and CIS)
to determine an appropriate stress level that will extend
the RUL of the component to the specified desired RUL
(RULd). Two approaches to the methodology are out-
lined below, the DS-based Approach and the CIS-based
Approach. It should be noted that this feedback correc-
tion loop is discussed to demonstrate that potential of the
uncertainty measures. A rigorous study of the stability of
this feedback correction routine must be undertaken be-
fore it can be implemented in a real-world scenario.

DS-based Approach to RUL Extension
Given a baseline RUL (RULBase), determined through
PF-based prognostic routines from a baseline stress level
of UBase, knowledge of the Dispersion Sensitivity allows
the system operator to extend the RUL from RULBase
to RULd by adjusting the stress factor to a safe level
(Ud). To determine Ud, the standard deviation of the
RUL prediction which places RULd in the 95th per-
centile of the distribution, while maintaining a mean of
mean{RULBase}, must be determined. This distribu-
tion is denoted as RULBase+ω̄ , as shown in (12). Using
a linear fit to map the standard deviation of the stress to
the standard deviation of the remaining useful life, the
standard deviation of the stress profile required to output
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a distribution ofRULBase+ω̄ is determined by (13). The
standard deviation of this stress is then utilized to deter-
mine how much the baseline stress must be reduced in
order to attain a remaining useful life of RULd, as seen
in (14).

stdev{RUL}

 o=stdev{RUL}

(stdev{input}=0%)

15%

 o=(DS-1)

stdev{ }stdev

Figure 4: Linear Mapping Between Standard Deviation
of Stress and Standard Deviation of RUL.

stdev{RULBase+ω̄} =
RULD − E{RULBase}

Z0.95
(12)

stdev{UBase+ω̄} =(
stdev{RULBase+ω̄}
stdev{RULBase}

− 1

)
stdev{ω}
DS − 1

(13)

Ud = UBase − stdev{UBase+ω̄} (14)

CIS-based Approach to RUL Extension
Similar to the dispersion sensitivity approach, given
RULBase from a baseline stress level of UBase, knowl-
edge of Confidence Interval Sensitivity allows the sys-
tem operator to extend the RUL from RULBase to
RULd by adjusting the stress factor to a safe level (Ud).
To determine Ud, the confidence interval length of the
RUL prediction which placesRULd at the highest end of
the confidence interval of the distribution, while main-
taining a mean of mean{RULBase}, must be deter-
mined. This distribution is denoted as RULBase+ω̄ , as
shown in (15). Using a linear fit to map the confidence
interval length of the stress to the confidence interval
length of the remaining useful life, the standard devi-
ation of the stress required to output a distribution of
RULBase+ω̄ is determined by (16). The standard devia-
tion of this stress is then utilized to determine how much
the baseline stress must be reduced in order to attain a
remaining useful life of RULd, as seen in (17).

length (CI{RULBase+ω̄}) =
2 (RULD − E{RULBase}) (15)

stdev{UBase+ω̄} =(
length(CI{RULBase+ω̄})
length(CI{RULBase})

− 1

)
stdev{ω}
CIS − 1

(16)

Ud = UBase − stdev{UBase+ω̄} (17)

length(CI{RUL})

CIo=length(CI{RUL})

(stdev{input}=0%)

15%

CIo=(CIS-1)

stdev{ }stdev

Figure 5: Linear Mapping Between Length of the Con-
fidence Interval of Stress and Length of the Confidence
Interval of RUL.

5. CASE STUDY: LOAD REDUCTIONS AND ITS
EFFECT ON FATIGUE CRACK GROWTH

An appropriate case study has been designed to test and
show the potential of the proposed feedback correction
strategy. This case study uses data (from a seeded fault
test) that describes a propagating fatigue crack on a criti-
cal component in a rotorcraft transmission system, which
emulates a situation where the pilot must remain air-
borne for a given amount of time in order to reach a safe
landing destination. In this example the remaining use-
ful life is defined as the time remaining until the failing
compont is no longer operable and the system encounters
catastrophic failure. The RUL extension methods dis-
cussed in this section will provide the pilot, or reconfig-
urable controller, with the information needed to adjust
the load of the aircraft and reduce the stress on the fail-
ing component, with the purpose of extending the RUL
to a desired time that ensures safe landing. Although a
physics-based model for a system of these characteris-
tics is a complex matter, it is possible to represent the
growth of the crack (fault dimension) using a simplified
model, where some nonlinear mapping functions are de-
fined on the basis of an ANSYS stress model for the in-
ner and outer tips of the fatigue crack (Orchard, 2009 and
Patrick, 2007).

In the experiment, the baseline stress level was 120%
of the maximum recommended torque. If this informa-
tion is fed into the proposed PF-based prognosis frame-
work, then the resulting ToF PDF (see cyan PDF in Fig-
ure 6), computed at the 300th cycle of operation, has an
expectation of 594 cycles, a standard deviation of 12.44
cycles, and a confidence interval length of 38 cycles for
α = 95%. If we are to compute the DS and CIS mea-
sures for this system at that particular cycle of operation
(300th cycle), then it is necessary to compute the statis-
tics of the ToF PDF that results after including uncer-
tainty in the system input. Given that the implementation
of a PF-based framework for failure prognosis allows to
perform this task in a simple and efficient manner, it is
possible, for example, to analyze the case when the in-
put uncertainty is characterized by zero-mean Gaussian
noise (standard deviation of 15% of maximum recom-
mended torque). The resulting ToF PDF, has a stan-
dard deviation of 41.52 cycles and a confidence interval
length of 142 cycles for α = 95% (see magenta PDF in
Figure 6). Considered the aforementioned information,
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the dispersion sensitivity is found to be:

DS15% =
stdev{RULBase+ω}
stdev{RULBase}

=

41.52cycles

12.44cycles
= 3.3362

and the confidence interval sensitivity is computed as

CIS15% =
length(CI{RULBase+ω})
length(CI{RULBase})

=

142cycles

38cycles
= 3.7368.

Figure 6: ToF Distributions for Baseline, Noisy, and De-
sired Stress Levels for a Cracked Gear Plate.

For this system the desired ToF is 714 cycles (RUL
of 414 cycles). If we were to use the DS-based ap-
proach to RUL extension to suggest a correction in the
stress profile for the system, then the standard deviation
of the noise level required for cycle 714 to be located at
the 95th percentile of the predicted magenta ToF PDF is
found by:

stdev{RULBase+ω̄} =
RULD − E{RULBase}

Z0.95
=

714− 594

1.627
= 73.755

Inserting this value into (13) and solving for
stdev{UBase+ω̄}yields a required standard devia-
tion of 31.64% for the input stresses. Therefore in
order to achieve the desired RUL of 714 cycles, the
stress factor must be reduced by 31.64% from 120%
to 88.36%. Similarly, for the CIS-based approach to
RUL extension, it is possible to estimate the required
variation considering:

length(CI{RULBase+ω̄}) =
2 (RULD − E{RULBase}) =

2(714− 594) = 240

Inserting this value into (16) and solving for
stdev{UBase+ω̄} yields a required standard devia-
tion of 29.13% for the input stress. Therefore in order to
achieve the desired RUL of 714 cycles, the stress factor
must be reduced by 29.13% from 120% to 90.70%.
Compare 88.36% and 90.70% to the actual stress factor
that results in a RUL of 714, which is 93%. Clearly, both
approaches for stress correction suggest a modification,
for the system input, that would have translated in an
appropriate extension of the remaining useful life of the
system.

6. CONCLUSION
This paper presents and tests a general approach for a
novel feedback correction loop, based on uncertainty
measures, to lengthen the RUL of a nonlinear, non-
Gaussian system. The method searches for a linear re-
lationship between the amount of uncertainty in the in-
put of a nonlinear stochastic system and the one that can
be found on its RUL estimate. Although the feedback
loop is implemented using simple linear relationships,
it is helpful to provide a quick insight into the manner
that the system reacts to changes on its input signals in
terms of its predicted RUL. The method is able to man-
age non-Gaussian PDF’s since it includes concepts such
as nonlinear state estimation and confidence intervals in
its formulation. Real data from a fault seeded test was
used to check if the proposed framework was able to an-
ticipate modifications on the system input to lengthen its
RUL. Results of this test indicate that the method was
able to successfully suggest the correction that the sys-
tem required. Future work will be focused on the devel-
opment and testing of similar strategies using different
input-output uncertainty metrics.
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